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Most NLP Tasks. E.g. 
● Sequence Tasks

○ Language Modeling
○ Machine Translation
○ Speech Recognition

● Transformer Networks

○ Transformers

○ BERT
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Each node has a forward -> 
and backward <- hidden state: 
Can represent as a 
concatenation of both. 



Multi-level bidirectional RNN (LSTM or GRU)
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(Eisenstein, 2018)



Encoder
A representation of input. 

(Eisenstein, 2018)



Encoder-Decoder

Representing input and converting
to output

(Eisenstein, 2018)



Encoder-Decoder

(Eisenstein, 2018)

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….



Encoder-Decoder
Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

<go>                 y(0)                            y(1)                                   y(2)                

….



Encoder-Decoder

A representation of input. 
Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

<go>               



Encoder-Decoder

A representation of input. 
Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

<go>               

essentially a language model conditioned on 
the final state from the encoder.  



Encoder-Decoder

When applied to new data...

<go>               

essentially a language model conditioned on 
the final state from the encoder.  



Encoder-Decoder

A representation of input. 
Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

<go>               



Encoder-Decoder

“seq2seq” model
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Language 1: (e.g. Chinese)

Language 2: (e.g. English)
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Attention

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

attention layer

i: current token of output
N: tokens of input

hi-1 hi hi+1

zn-1 zn zn+1

hn-1 hn hn+1

hn-1 hn hn+1

chi

s1 s2
s3 s4
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Z is the vector to be attended to (the 
value in memory). It is typically 
hidden states of the input (i.e. sn) 
but can be anything.
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A useful abstraction is to make the 
vector attended to (the “value 
vector”, Z) separate than the “key 
vector” (s). 

z1 z2 z3 z4

values
keys
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If variables are 
standardized, 
matrix multiply 
produces a 
similarity score. 
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Machine Translation

Why? 

● $40billion/year industry
● A center piece of many genres of science fiction
● A fairly “universal” problem:

○ Language understanding
○ Language generation

● Societal benefits of inter-
cultural communication

(Douglas Adams)



Machine Translation

Why Neural Network Approach works?  (Manning, 2018)

● Joint end-to-end training: learning all parameters at once.

● Exploiting distributed representations (embeddings)

● Exploiting variable-length context 

● High quality generation from deep decoders - stronger 

language models (even when wrong, make sense)



Machine Translation

As an optimization problem (Eisenstein, 2018):
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Attention

<go>               

Softmax

y(0)                 y(1)                            y(2)                                   y(3)                

….

s1 s2
s3 s4

Do we even need all these 
RNNs?
(Vaswani et al., 2017: Attention is all you need)
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v , Wh , Ws

A useful abstraction is to make the 
vector attended to (the “value 
vector”, Z) separate than the “key 
vector” (s). 
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(Eisenstein, 2018)

zjsj

hi



The Transformer: “Attention-only” models

(Eisenstein, 2018)

Attention as weighting a value 
based on a query and key:
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The Transformer: “Attention-only” models

(Eisenstein, 2018)

hi-1      hi                hi+1

self attention hi

hi-1 hi-1
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The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

Attend to all hidden states 
in your “neighborhood”. 
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The Transformer: “Attention-only” models

Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

Linear layer:
WTX

One set of weights for 
each of for K, Q, and V

ktq(k,q) (ktq) σ



The Transformer: “Attention-only” models

Why?

● Don’t need complexity of LSTM/GRU cells 

● Constant num edges between words (or input steps)

● Enables “interactions” (i.e. adaptations) between words

● Easy to parallelize -- don’t need sequential processing.



The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words. 



The Transformer

Solution: Multi-head attention



Multi-head Attention
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Transformer for
Encoder-Decoder

sequence index (t)
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Transformer for
Encoder-Decoder

Residualized 
Connections

residuals enable 
positional 
information to be 
passed along



Transformer for
Encoder-Decoder
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Transformer for
Encoder-Decoder

essentially, a language 
model

Decoder blocks out
future inputs



Transformer for
Encoder-Decoder

essentially, a language 
model

Add conditioning of the LM 
based on the encoder



Transformer for
Encoder-Decoder



Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformer

● Utilize Self-Attention

● Simple att scoring function (dot product, scaled)

● Added linear layers for Q, K, and V

● Multi-head attention

● Added positional encoding

● Added residual connection

● Simulate decoding by masking
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BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings 
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads. 

She  saw  the  man  on  the hill  with  the  telescope.

She [mask] the man on the hill [mask] the telescope.

Mask 1 in 7 words:
● Too few: expensive, less robust
● Too many: not enough context
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BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings 
(or pre-trained contextualized encoder)

● Bidirectional context by “masking” in the middle
● A lot of layers, hidden states, attention heads. 

● BERT-Base, Cased: 
12-layer, 768-hidden, 12-heads , 110M parameters

● BERT-Large, Cased: 
24-layer, 1024-hidden, 16-heads, 340M parameters

● BERT-Base, Multilingual Cased: 
104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip


BERT

(Devlin et al., 2019)
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BERT

Differences from previous state of the art:

● Bidirectional transformer (through masking)
● Directions jointly trained at once. 
● Capture sentence-level relations

(Devlin et al., 2019)

tokenize into “word pieces”



BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8
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BERT: Pre-training; Fine-tuning

[CLS] vector at start 
is supposed to 
capture meaning of 
whole sequence.

Average of top 
layer (or second to 
top) also often 
used.

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

avg
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Neural Machine Translation

Where does neural approach fall short? (Manning, 2018)

● Translation process is mostly a black box -- can’t answer 

“why” for reordering, word choice decisions

● No direct use of semantic or syntactic structures

● Not modeling discourse structure -- only rough sense of 

how sentences relate to each other. Doesn’t model long 

distance anaphora. 


